J. Hofbrucker
Two-photon ionization of many-electron atoms
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (June 2020)
Two-photon ionization of many-electron atoms
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (June 2020)
Abstract:
Until recently, the nonlinear interaction between light and matter has been restricted to only low photon energies produced by optical lasers. However, about a decade ago, the rise of free-electron laser facilities revolutionized the field of nonlinear light-matter interaction by delivering intense high-energy light pulses. Today, such lasers are used for research in materials science, chemical technology, biophysical science, solid-state physics as well as fundamental research. It is the new experimental possibilities provided by free-electron lasers that motivated the work presented in this thesis. Two-photon ionization process is one of the simplest nonlinear interactions in which absorption of two photons by an atom (or a molecule) leads to promoting one of its bound electrons to continuum. This work presents studies of two-photon ionization of neutral atoms. After a brief historical introduction to the topic of nonlinear light-matter interaction, the density matrix describing the state of an atom and a photoelectron following two-photon ionization is derived. The density matrix contains the complete information about the overall system consisting of a photoion and a photoelectron. In each successive chapter, part of this density matrix is used to obtain characteristic quantities such as total two-photon ionization cross section, photoelectron angular distributions, ion polarization or even degree of polarization of fluorescence photon produced by subsequent decay of the photoion. Physical properties of these quantities are studied and intriguing phenomena, such as elliptical dichroism, polarization transfer as well as relativistic and screening effects are investigated. In one-photon ionization, the photon energy for which the dominant ionization channel vanishes is called the Cooper minimum. This concept is extended to nonlinear ionization of atoms and the effect of the minimum on all above mentioned quantities is studied. In this work it is shown, that the nonlinear Cooper minimum leads to strong variation in practically all observables of the two-photon ionization process. For example, the polarization transfer from the incident to fluorescence photon can be maximized and so can be the elliptical dichroism in photoelectron angular distributions. Furthermore, it is theorized, that detection of the energy position of the nonlinear Cooper minimum could lead to comparison of experimental measurements and theoretical calculations at hitherto unreachable accuracy.