Peer-Review Publications

2018

K. Poder, M. Tamburini, G. Sarri, A. D. Piazza, S. Kuschel, C. Baird, K. Behm, S. Bohlen, J. Cole, D. Corvan, M. Duff, E. Gerstmayr, C. Keitel, K. Krushelnick, S. Mangles, P. McKenna, C. Murphy, Z. Najmudin, C. Ridgers, G. Samarin, D. Symes, A. Thomas, J. Warwick, and M. Zepf
Experimental Signatures of the Quantum Nature of Radiation Reaction in the Field of an Ultraintense Laser
Phys. Rev. X, 8 :031004 (July 2018)
Abstract:
The description of the dynamics of an electron in an external electromagnetic field of arbitrary intensity is one of the most fundamental outstanding problems in electrodynamics. Remarkably, to date, there is no unanimously accepted theoretical solution for ultrahigh intensities and little or no experimental data. The basic challenge is the inclusion of the self-interaction of the electron with the field emitted by the electron itself—the so-called radiation reaction force. We report here on the experimental evidence of strong radiation reaction, in an all-optical experiment, during the propagation of highly relativistic electrons (maximum energy exceeding 2 GeV) through the field of an ultraintense laser (peak intensity of 4×10²⁰  W/cm²). In their own rest frame, the highest-energy electrons experience an electric field as high as one quarter of the critical field of quantum electrodynamics and are seen to lose up to 30% of their kinetic energy during the propagation through the laser field. The experimental data show signatures of quantum effects in the electron dynamics in the external laser field, potentially showing departures from the constant cross field approximation.
W. Schumaker, T. Liang, R. Clarke, J. M. Cole, G. Grittani, S. Kuschel, S. P. D. Mangles, Z. Najmudin, K. Poder, G. Sarri, D. Symes, A. G. R. Thomas, M. Vargas, M. Zepf, and K. Krushelnick
Making pions with laser light
New J. Phys., 20 :073008 (July 2018)
Abstract:
The interaction of high intensity short pulse laser beams with plasmas can accelerate electrons to energies in excess of a GeV. These electron beams can subsequently be used to generate short-lived particles such as positrons, muons, and pions. In recent experiments, we have made the first measurements of pion production using 'all optical' methods. In particular, we have demonstrated that the interaction of bremsstrahlung generated by laser driven electron beams with aluminum atoms can produce the long lived isotope of magnesium (²⁷Mg) which is a signature for pion (π⁺) production and subsequent muon decay. Using a 300 TW laser pulse, we have measured the generation of 150 ± 50 pions per shot. We also show that the energetic electron beam is a source of an intense, highly directional neutron beam resulting from (γ, n) reactions which contributes to the ²⁷Mg measurement as background via the (n, p) process.
J. Hofbrucker, A. Volotka, and S. Fritzsche
Maximum Elliptical Dichroism in Atomic Two-Photon Ionization
Phys. Rev. Lett., 121 :053401 (July 2018)
Abstract:
Elliptical dichroism is known in atomic photoionization as the difference in the photoelectron angular distributions produced in nonlinear ionization of atoms by left- and right-handed elliptically polarized light. We theoretically demonstrate that the maximum dichroism |ΔED|=1 always appears in two-photon ionization of any atom if the photon energy is tuned in so that the electron emission is dominantly determined by two intermediate resonances. We propose the two-photon ionization of atomic helium in order to demonstrate this remarkable phenomenon. The maximum elliptical dichroism could be used as a sensitive tool for analyzing the polarization state of photon beams produced by free-electron lasers.
C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert
Phase-shift evolution of the thermally-induced refractive index grating in high-power fiber laser systems induced by pump-power variations
Opt. Express, 26 :19489 (July 2018)
Abstract:
A phase shift between the modal interference pattern and the thermally-induced refractive index grating is most likely the ultimate trigger for the damaging effect of transverse mode instabilities (TMI) in high-power fiber laser systems. By using comprehensive simulations, the creation and evolution of a thermally-induced phase shift is explained and illustrated in detail. It is shown that such a phase shift can be induced by a variation of the pump power. The gained knowledge about the generation and evolution of the phase shift will allow for the development of new mitigation strategies for TMI.
K. Bergner, M. Müller, R. Klas, J. Limpert, S. Nolte, and A. Tünnermann
Scaling ultrashort laser pulse induced glass modifications for cleaving applications
Appl. Opt., 57 :5941 (July 2018)
Abstract:
Ultrashort laser pulses allow for in-volume processing of glass through non-linear absorption. This results in permanent material changes, largely independent of the processed glass, and it is of particular relevance for cleaving applications. In this paper, a laser with a wavelength of 1030 nm, pulse duration of 19 ps, repetition rate of 10 kHz, and burst regime consisting of either four or eight pulses, with an intra-burst pulse separation of 12.5 ns, is used. Subsequently, a Gaussian–Bessel focal line is generated in a fused silica substrate with the aid of an axicon configuration. We show how the structure of the modifications, including the length of material disruptions and affected zones, can be directly influenced by a reasonable choice of focus geometry, pulse energy, and burst regime. We achieve single-shot modifications with 2 μm in diameter and 7.6 mm in length, exceeding an aspect ratio of 1:3800. Furthermore, a maximum length of 10.8 mm could be achieved with a single shot.
W. Paufler, B. Böning, and S. Fritzsche
Tailored orbital angular momentum in high-order harmonic generation with bicircular Laguerre-Gaussian beams
Phys. Rev. A, 98 :011401 (July 2018)
Abstract:
We report on a method to generate extreme ultraviolet vortices from high-order harmonic generation with two-color counter-rotating Laguerre-Gaussian (LG) beams that carry a well-defined orbital angular momentum (OAM). Our calculations show that the OAM of each harmonic can be directly controlled by the OAM of the incident LG modes. Furthermore, we show how the incoming LG modes have to be tailored, in order to generate every possible value of OAM in the emitted harmonics. In addition, we analyze the emitted harmonics with respect to their divergence and find that it decreases with the harmonic order and increases with the OAM of the emitted harmonic.
W. Becker, S. P. Goreslavski, D. B. Milošević, and G.G. Paulus
The plateau in above-threshold ionization: the keystone of rescattering physics
J. Phys. B, 51 :162002 (July 2018)
Abstract:
A review is presented of the rescattering plateau in laser-induced above-threshold ionization and its various features as they were discovered over time. Several theoretical explanations are discussed, from simple momentum conservation to the quantum-mechanical improved strong-field approximation and the inherent quantum orbits or, alternatively, entirely classical methods. Applications of the plateau to the extraction of atomic or molecular potentials and to the characterization of the driving laser pulse are also surveyed.
A. Woldegeorgis, T. Kurihara, B. Beleites, J. Bossert, R. Grosse, G.G. Paulus, F. Ronneberger, and A. Gopal
THz Induced Nonlinear Effects in Materials at Intensities above 26 GW/cm2
J Infrared Milli Terahz Waves, 39 :667 (July 2018)
Abstract:
Nonlinear refractive index and absorption coefficient are measured for common semiconductor material such as silicon and organic molecule such as lactose in the terahertz (THz) spectral regime extending from 0.1 to 3 THz. Terahertz pulses with field strengths in excess of 4.4 MV/cm have been employed. Transmittance and the transmitted spectrum were measured with Z-scan and single shot noncollinear electro-optic pump-probe techniques. The THz-induced change in the refractive index (Deltan) shows frequency-dependence and a maximum change of -0.128 at 1.37 THz in lactose and up to +0.169 at 0.15 THz in silicon was measured for a peak incident THz intensity of 26 GW/cm2. Furthermore, the refractive index variation shows a quadratic dependence on the incident THz field, implying the dominance of third-order nonlinearity.
T. Gassner, M. Trassinelli, R. Hess, U. Spillmann, D. Banaś, K.-H. Blumenhagen, F. Bosch, C. Brandau, W. Chen, C. Dimopoulou, E. Förster, R. Grisenti, A. Gumberidze, S. Hagmann, P.-M. Hillenbrand, P. Indelicato, P. Jagodzinski, T. Kämpfer, Ch. Kozhuharov, M. Lestinsky, D. Liesen, Yu. A. Litvinov, R. Loetzsch, B. Manil, R. Märtin, F. Nolden, N. Petridis, M. S. Sanjari, K. Schulze, M. Schwemlein, A. Simionovici, M. Steck, T. Stöhlker, C. I. Szabo, S. Trotsenko, I. Uschmann, G. Weber, O. Wehrhan, N. Winckler, D. Winters, N. Winters, E. Ziegler, and H. Beyer
Wavelength-dispersive spectroscopy in the hard x-ray regime of a heavy highly-charged ion: the 1s Lamb shift in hydrogen-like gold
New J. Phys., 20 :073033 (July 2018)
Abstract:
Accurate spectroscopy of highly-charged high-Z ions in a storage ring is demonstrated to be feasible by the use of specially adapted crystal optics. The method has been applied for the measurement of the is Lamb shift in hydrogen-like gold (Au78+) in a storage ring through spectroscopy of the Lyman x-rays. This measurement represents the first result obtained for a high-Z element using high-resolution wavelength-dispersive spectroscopy in the hard x-ray regime, paving the way for sensitivity to higher-order QED effects.
S. Herzer, A. Woldegeorgis, J. Polz, A. Reinhard, M. Almassarani, B. Beleites, F. Ronneberger, R. Grosse, G.G. Paulus, U. Huebner, T. May, and A. Gopal
An investigation on THz yield from laser-produced solid density plasmas at relativistic laser intensities
New J. Phys., 20 :063019 (June 2018)
Abstract:
We experimentally characterize the generation of high-power terahertz radiation (THz) at the rear surface of a target irradiated by multiple laser pulses. A detailed dependence of the THz yield as a function of laser pulse duration, energy, target material and thickness is presented. We studied the THz radiation emitted mainly in two directions from the target rear surface, namely target normal (acceptance angle 0.87 sr) and non-collinear direction (perpendicular to the target normal direction—acceptance angle 4.12 sr). Independent measurements based on electro-optic diagnostics and pyroelectric detector were employed to estimate the THz yield. Most of the energy is emitted at large angles relative to the target normal direction. THz yield increases with incident laser intensity and thinner targets are better emitters of THz radiation compared to thicker ones.
S. Hendi, B. E. Panah, S. Panahiyan, H. Liu, and X.-H. Meng
Black holes in massive gravity as heat engines
Phys. Lett. B, 781 :40 (June 2018)
Abstract:
The paper at hand studies the heat engine provided by black holes in the presence of massive gravity. The main motivation is to investigate the effects of massive gravity on different properties of the heat engine. It will be shown that massive gravity parameters modify the efficiency of engine on a significant level. Furthermore, it will be pointed out that it is possible to have a heat engine for non-spherical black holes in massive gravity, and therefore, we will study the effects of horizon topology on the properties of heat engine. Surprisingly, it will be shown that the highest efficiency for the heat engine belongs to black holes with the hyperbolic horizon, while the lowest one belongs to the spherical black holes.
D. Zille, D. Adolph, M. Möller, A. M. Sayler, and G.G. Paulus
Chirp and carrier-envelope-phase effects in the multiphoton regime: measurements and analytical modeling of strong-field ionization of sodium
New J. Phys., 20 :063018 (June 2018)
Abstract:
We investigate the influence of chirp on carrier-envelope-phase (CEP)-dependent strong-field few-cycle laser-induced photoelectron spectra of sodium, well within the multiphoton regime. Our measurements and analytical model of this process reveal a simple chirp-dependence, which has the potential to be utilized as an online monitor of laser chirp. Moreover, this effect could extend single-shot measurements of the CEP using above-threshold ionization to longer, chirped pulses, and significantly lower the required pulse energies. Specifically, at a wavelength of 775 nm and an intensity of 6.5 x 10^12 W/cm^2 the CEP- and energy-dependent left-right asymmetries of emitted electrons are measured in a time-of-flight spectrometer. In these asymmetry maps, inclined stripe-like structures emerge, where the inclination is tunable with the chirp of the pulse. We report a simple analytical model, explaining the effect as the interference of electrons with even and odd angular momenta, located at energies in between adjacent above-threshold ionization peaks. As we demonstrate, the analytical model is in good agreement with the measurement, as well as with solutions of the three-dimensional time-dependent Schrödinger equation. Further, the analytical model, which can easily be extended to other atoms, allows us to derive an equation, describing the relation between the slope of the inclined stripes and the chirp of the laser.
P. Seidel, V. Tympel, R. Neubert, J. Golm, M. Schmelz, R. Stolz, V. Zakosarenko, T. Sieber, M. Schwickert, F. Kurian, F. Schmidl, and T. Stöhlker
Cryogenic Current Comparators for Larger Beamlines
IEEE Trans. Appl. Supercond., 28 :1 (June 2018)
Abstract:
The non-destructive measurement of charged particle beams with intensities below 1 μA represents still a challenge in current R&D efforts. Beam peak-intensities of modern high power accelerators are in the range of milli-amperes, but for a large number of experiments, the pulse lengths have to be increased by several orders of magnitude (slow extraction process) to avoid saturation in the detectors. At the same time, the intensities of exotic ion- or antiproton-beams – depending on the production yield – might be in the range of nano-amperes or even below. The solution of this measurement problem should moreover include the possibility to calibrate the electrical current with traceability to national standards.
M. M. Günther, A. V. Volotka, M. Jentschel, S. Fritzsche, T. Stöhlker, P. G. Thirolf, and M. Zepf
Dispersive refraction of different light to heavy materials at MeV γ-ray energies
Phys. Rev. A, 97 :063843 (June 2018)
Abstract:
The dispersive behavior of materials with atomic charge numbers varying from Z=4 (beryllium, Be) to Z=82 (lead, Pb) was investigated experimentally and theoretically at gamma-ray energies up to 2 MeV. The experiment was performed at the double-crystal gamma spectrometer GAMS6 of the Institut Laue-Langevin in Grenoble. The experimental results were compared with theoretical calculations which account for all major elastic processes involved. Overall, we found a good agreement between theory and experiment. We find that, for the development of refractive optics at $\gamma$-ray energies beyond those currently in use, high-Z materials become increasingly attractive compared to the beryllium lens-stacks used at x-ray energies.
G. Tadesse, W. Eschen, R. Klas, V. Hilbert, D. Schelle, A. Nathanael, M. Zilk, M. Steinert, F. Schrempel, T. Pertsch, A. Tünnermann, J. Limpert, and J. Rothhardt
High resolution XUV Fourier transform holography on a table top
Sci. Rep., 8 :8677 (June 2018)
Abstract:
Today, coherent imaging techniques provide the highest resolution in the extreme ultraviolet (XUV) and X-ray regions. Fourier transform holography (FTH) is particularly unique, providing robust and straightforward image reconstruction at the same time. Here, we combine two important advances: First, our experiment is based on a table-top light source which is compact, scalable and highly accessible. Second, we demonstrate the highest resolution ever achieved with FTH at any light source (34 nm) by utilizing a high photon flux source and cutting-edge nanofabrication technology. The performance, versatility and reliability of our approach allows imaging of complex wavelength-scale structures, including wave guiding effects within these structures, and resolving embedded nanoscale features, which are invisible for electron microscopes. Our work represents an important step towards real-world applications and a broad use of XUV imaging in many areas of science and technology. Even nanoscale studies of ultra-fast dynamics are within reach.
R. Popov, A. Bondarev, Y. Kozhedub, I. Maltsev, V. Shabaev, I. Tupitsyn, X. Ma, G. Plunien, and T. Stöhlker
One-center calculations of the electron-positron pair creation in low-energy collisions of heavy bare nuclei
Eur. Phys. J. D, 72 :115 (June 2018)
Abstract:
The probabilities of bound-free electron-positron pair creation are calculated for head-on collisions of bare uranium nuclei beyond the monopole approximation. The calculations are based on the numerical solving of the time-dependent Dirac equation in the target reference frame with multipole expansion of the projectile potential. In addition, the energy dependence of the pair-creation cross section is studied in the monopole approximation.
S. Raeder, D. Ackermann, H. Backe, R. Beerwerth, J. C. Berengut, M. Block, A. Borschevsky, B. Cheal, P. Chhetri, Ch. E. Düllmann, V. A. Dzuba, E. Eliav, J. Even, R. Ferrer, V. V. Flambaum, S. Fritzsche, F. Giacoppo, S. Götz, F. P. Heßberger, M. Huyse, U. Kaldor, O. Kaleja, J. Khuyagbaatar, P. Kunz, M. Laatiaoui, F. Lautenschläger, W. Lauth, A. K. Mistry, E. Minaya Ramirez, W. Nazarewicz, S. G. Porsev, M. S. Safronova, U. I. Safronova, B. Schuetrumpf, P. Van Duppen, T. Walther, C. Wraith, and A. Yakushev
Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy
Phys. Rev. Lett., 120 :232503 (June 2018)
Abstract:
Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of 252,253,254No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton density distribution in 252,254No isotopes. Finally, the hyperfine splitting of 253No was evaluated, enabling a complementary measure of its (quadrupole) deformation, as well as an insight into the neutron single-particle wave function via the nuclear spin and magnetic moment.
J. Körner, T. Lühder, J. Reiter, I. Uschmann, H. Marschner, V. Jambunathan, A. Lucianetti, T. Mocek, J. Hein, and M.C. Kaluza
Spectroscopic investigations of thulium doped YAG and YAP crystals between 77 K and 300 K for short-wavelength infrared lasers
J. Lumin., 202 :427 (June 2018)
Abstract:
We present detailed measurements of laser relevant cross sections of thulium doped yttrium-aluminum-garnet (Tm:YAG) and yttrium-aluminum-perovskite (Tm:YAP), including the absorption cross sections for the H63 to H43 transition near 800nm, and the absorption and emission cross sections for the transitions between the H63 and F43 manifolds in the short-wavelength infrared region. For Tm:YAP we present data for all polarization axes. The measurements were carried out at temperatures ranging from 80 K to 300 K. Furthermore, re-absorption free fluorescence lifetimes of the F43 to H63 transition at 77 K, 200 K and 29 5K were obtained using the pinhole method. We observed a significant enhancement of the fluorescence lifetime when cooling from room temperature to 77 K. The lifetime was increased from 9.42 ms to 15.22 ms in Tm:YAG and from 3.81 ms to 4.93 ms in Tm:YAP. This indicates that lifetime quenching is present at room temperature, which can be overcome, at least partially, by cryogenic cooling. These data are presented with the scope to qualify these materials for their use in a new generation of cryogenically cooled, short-wavelength infrared, high-energy class diode pumped solid state lasers utilizing the cross relaxation mechanism for pumping.
P. Micke, S. Kuhn, L. Buchauer, J. R. Harries, T. M. Bücking, K. Blaum, A. Cieluch, A. Egl, D. Hollain, S. Kraemer, T. Pfeifer, P. O. Schmidt, R. X. Schüssler, Ch. Schweiger, T. Stöhlker, S. Sturm, R. N. Wolf, S. Bernitt, and J. R. Crespo López-Urrutia
The Heidelberg compact electron beam ion traps
Rev. Sci. Instrum., 89 :063109 (June 2018)
Abstract:
Electron beam ion traps (EBITs) are ideal tools for both production and study of highly charged ions (HCIs). In order to reduce their construction, maintenance, and operation costs, we have developed a novel, compact, room-temperature design, the Heidelberg Compact EBIT (HC-EBIT). Four already commissioned devices operate at the strongest fields (up to 0.86 T) reported for such EBITs using permanent magnets, run electron beam currents up to 80 mA, and energies up to 10 keV. They demonstrate HCI production, trapping, and extraction of pulsed Ar¹⁶⁺ bunches and continuous 100 pA ion beams of highly charged Xe up to charge state 29+, already with a 4 mA, 2 keV electron beam. Moreover, HC-EBITs offer large solid-angle ports and thus high photon count rates, e.g., in x-ray spectroscopy of dielectronic recombination in HCIs up to Fe²⁴⁺, achieving an electron-energy resolving power of E/ΔE > 1500 at 5 keV. Besides traditional on-axis electron guns, we have also implemented a novel off-axis gun for laser, synchrotron, and free-electron laser applications, offering clear optical access along the trap axis. We report on its first operation at a synchrotron radiation facility demonstrating the resonant photoexcitation of highly charged oxygen.
M. Chemnitz, R. Scheibinger, C. Gaida, M. Gebhardt, F. Stutzki, S. Pumpe, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt
Thermodynamic control of soliton dynamics in liquid-core fibers
Optica, 5 :695 (June 2018)
Abstract:
Liquid-core fibers offer local external control over pulse dispersion due to their strong thermodynamic response, offering a new degree of freedom in accurate soliton steering for reconfigurable nonlinear light generation. Here, we show how to accurately control soliton dynamics and supercontinuum generation in carbon disulfide/silica fibers by temperature and pressure tuning, monitored via the spectral location and the onset energy of non-solitonic radiation. Simulations and phase-matching calculations based on an extended thermodynamic dispersion model of carbon disulfide confirm the experimental results, which allows us to demonstrate the potential of temperature detuning of liquid-core fibers for octave spanning recompressible supercontinuum generation in the near-infrared.
J. G. Cubiss, A. E. Barzakh, M. D. Seliverstov, A. N. Andreyev, B. Andel, S. Antalic, P. Ascher, D. Atanasov, D. Beck, J. Bieron, K. Blaum, Ch. Borgmann, M. Breitenfeldt, L. Capponi, T. E. Cocolios, T. Day Goodacre, X. Derkx, H. De Witte, J. Elseviers, D. V. Fedorov, V. N. Fedosseev, S. Fritzsche, L. P. Gaffney, S. George, L. Ghys, F. P. Heßberger, M. Huyse, N. Imai, Z. Kalaninová, D. Kisler, U. Köster, M. Kowalska, S. Kreim, J. F. W. Lane, V. Liberati, D. Lunney, K. M. Lynch, V. Manea, B. A. Marsh, S. Mitsuoka, P. L. Molkanov, Y. Nagame, D. Neidherr, K. Nishio, S. Ota, D. Pauwels, L. Popescu, D. Radulov, E. Rapisarda, J. P. Revill, M. Rosenbusch, R. E. Rossel, S. Rothe, K. Sandhu, L. Schweikhard, S. Sels, V. L. Truesdale, C. Van Beveren, P. Van den Bergh, Y. Wakabayashi, P. Van Duppen, K. D. A. Wendt, F. Wienholtz, B. W. Whitmore, G. L. Wilson, R. N. Wolf, and K. Zuber
Charge radii and electromagnetic moments of ¹⁹⁵⁻²¹¹At
Phys. Rev. C, 97 :054327 (May 2018)
Abstract:
Hyperfine-structure parameters and isotope shifts of 195–211At have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantly α-decaying nuclei. The electromagnetic moments and changes in the mean-square charge radii of the astatine nuclei have been extracted from the measured hyperfine-structure constants and isotope shifts. This was only made possible by dedicated state-of-the-art large-scale atomic computations of the electronic factors and the specific mass shift of atomic transitions in astatine that are needed for these extractions. By comparison with systematics, it was possible to assess the reliability of the results of these calculations and their ascribed uncertainties. A strong deviation in the ground-state mean-square charge radii of the lightest astatine isotopes, from the trend of the (spherical) lead isotopes, is interpreted as the result of an onset of deformation. This behavior bears a resemblance to the deviation observed in the isotonic polonium isotopes. Cases for shape coexistence have been identified in 197,199At, for which a significant difference in the charge radii for ground (9/2−) and isomeric (1/2+) states has been observed.
R. Singh Sidhu, J. Glorius, Yu. A. Litvinov, M. K. Pavićević, M. S. Sanjari, and T. Stöhlker
Electroweak Decays of Highly Charged Ions
EPJ Web Conf., 178 :01003 (May 2018)
Abstract:
In this contribution we review the present status of experimental studies of electroweak decays of highly charged ions. A particular focus will be given on the bound state beta decay measurement of 205Tl.
M. Cerchez, M. Swantusch, M. Toncian, X. M. Zhu, R. Prasad, T. Toncian, Ch. Rödel, O. Jäckel, G.G. Paulus, A. A. Andreev, and O. Willi
Enhanced energy absorption of high intensity laser pulses by targets of modulated surface
Appl. Phys. Lett., 112 :221103 (May 2018)
Abstract:
Investigations of energy transfer of high intensity (I=5x10^19 W/cm2), ultrashort (<30 fs) Ti:Sa laser pulses to solid targets with a randomly rough surface have been performed. We investigated the influence of the target surface morphology on the efficiency of energy transfer of p-polarized laser pulses characterized by a very high contrast. Targets with a roughness r larger than 20% of the laser wavelength proved to absorb a remarkably large fraction of energy reaching up to 70%, almost independent of the incidence angle. Numerical simulations of various interaction conditionsare in agreement with the experimental data and confirm the effect of the target morphology and its surface parameters on the enhanced energy absorbed fraction.
B. Goswami, A. V. Volotka, and S. Fritzsche
Influence of a stray magnetic field on the measurement of long-range spin-spin interaction
J. Phys. Commun., 2 :055025 (May 2018)
Abstract:
We study the influence of an additional uncontrolled (stray) magnetic field upon the measurement of long-range spin-spin interaction strength of two spin-1/2 valence electrons bound in two separate ions at well-defined distances from each other. This stray field, which is neither perpendicular nor parallel to the line connecting two ions, could appear due to the Earth magnetic field, or, due to the slight angular misalignment between the applied magnetic field and the line connecting two ions. It is found that the presence of the stray magnetic field plays an important role in the dynamics of the spin-states of two electrons. If neglected in the analysis, moreover, such a stray field may affect the measurement of the spin-spin interaction strength, especially at smaller inter-spin distances.
A. Kleinschmidt, V. Bagnoud, O. Deppert, A. Favalli, S. Frydrych, J. Hornung, D. Jahn, G. Schaumann, A. Tebartz, F. Wagner, G. Wurden, B. Zielbauer, and M. Roth
Intense, directed neutron beams from a laser-driven neutron source at PHELIX
Phys. Plasmas, 25 :053101 (May 2018)
Abstract:
Laser-driven neutrons are generated by the conversion of laser-accelerated ions via nuclear reactions inside a converter material. We present results from an experimental campaign at the PHELIX laser at GSI in Darmstadt where protons and deuterons were accelerated from thin deuterated plastic foils with thicknesses in the μm and sub-μm range. The neutrons were generated inside a sandwich-type beryllium converter, leading to reproducible neutron numbers around 10^11 neutrons per shot. The angular distribution was measured with a high level of detail using up to 30 bubble detectors simultaneously. It shows a laser forward directed component of up to 1.42 × 10^10 neutrons per steradian, corresponding to a dose of 43 mrem scaled to a distance of 1 m from the converter.