S. Fritzsche
A fresh computational approach to atomic structures, processes and cascades
Comput. Phys. Commun., 240 :1 (July 2019)
A fresh computational approach to atomic structures, processes and cascades
Comput. Phys. Commun., 240 :1 (July 2019)
Abstract:
Electronic structure computations of atoms and ions have a long tradition in physics with applications in basic research, spectroscopy, life sciences and technology. Various theoretical methods (and codes) have therefore been developed to account for the many-particle structure of atoms, from simple semi-empirical estimates to accurate predictions of selected data, and up to highly advanced time-independent and time-dependent numerical techniques. — Here, I present a fresh concept and implementation of (relativistic) atomic structure theory that supports the computation of interaction amplitudes, properties as well as a large number of excitation and decay processes for open-shell atoms and ions across the whole periodic table. This implementation will facilitate also studies on atomic cascades, responses as well as the time-evolution of atoms and ions. It is based on Julia, a new programming language for scientific computing, and provides an easy-to-use but powerful platform to extent atomic theory towards new applications.