W. Placzek,
A. Abramov,
S. Alden,
R. Alemany Fernandez,
P. Antsiferov,
A. Apyan,
H. Bartosik,
E. Bessonov,
N. Biancacci,
J. Bieron,
A. Bogacz,
A. Bosco,
R. Bruce,
D. Budker,
K. Cassou,
F. Castelli,
I. Chaikovska,
C. Curatolo,
P. Czodrowski,
A. Derevianko,
K. Dupraz,
Y. Dutheil,
K. Dzierzcega,
V. Fedosseev,
N. Fuster Martinez,
S. Gibson,
B. Goddard,
A. Gorzawski,
S. Hirlander,
J. Jowett,
R. Kersevan,
M. Kowalska,
M. Krasny,
F. Kroeger,
M. Lamont,
T. Lefevre,
D. Manglunki,
B. Marsh,
A. Martens,
J. Molson,
D. Nutarelli,
L. Nevay,
A. Petrenko,
V. Petrillo,
S. Radaelli,
S. Pustelny,
S. Rochester,
M. Sapinski,
M. Schaumann,
L. Serafini,
V. Shevelko,
T. Stoehlker,
A. Surzhikov,
I. Tolstikhina,
F. Velotti,
G. Weber,
Y. Wu,
C. Yin-Vallgren,
M. Zanetti,
F. Zimmermann,
M. Zolotorev,
and F. Zomer
Gamma Factory at CERN - Novel Research Tools Made of Light
Acta Phys. Polon., 50 :1191 (June 2019)
Gamma Factory at CERN - Novel Research Tools Made of Light
Acta Phys. Polon., 50 :1191 (June 2019)
Abstract:
We discuss the possibility of creating novel research tools by producing and storing highly relativistic beams of highly ionised atoms in the CERN accelerator complex, and by exciting their atomic degrees of freedom with lasers to produce high-energy photon beams. Intensity of such photon beams would be by several orders of magnitude higher than offered by the presently operating light sources, in the particularly interesting gamma-ray energy domain of 0.1-400 MeV. In this energy range, the high-intensity photon beams can be used to produce secondary beams of polarised electrons, polarised positrons, polarised muons, neutrinos, neutrons and radioactive ions. New research opportunities in a wide domain of fundamental and applied physics can be opened by the Gamma Factory scientific programme based on the above primary and secondary beams.