J. Xu,
A. Buck,
S.-W. Chou,
K. Schmid,
B. Shen,
T. Tajima,
M.C. Kaluza,
and L. Veisz
Dynamics of electron injection in a laser-wakefield accelerator
Phys. Plasmas, 24 :083106 (August 2017)
Dynamics of electron injection in a laser-wakefield accelerator
Phys. Plasmas, 24 :083106 (August 2017)
Abstract:
The detailed temporal evolution of the laser-wakefield acceleration process with controlled injection, producing reproducible high-quality electron bunches, has been investigated. The localized injection of electrons into the wakefield has been realized in a simple way - called shock-front injection - utilizing a sharp drop in plasma density. Both experimental and numerical results reveal the electron injection and acceleration process as well as the electron bunch's temporal properties. The possibility to visualize the plasma wave gives invaluable spatially resolved information about the local background electron density, which in turn allows for an efficient suppression of electron self-injection before the controlled process of injection at the sharp density jump. Upper limits for the electron bunch duration of 6.6 fs FWHM, or 2.8 fs (r.m.s.) were found. These results indicate that shock-front injection not only provides stable and tunable, but also few-femtosecond short electron pulses for applications such as ultrashort radiation sources, time-resolved electron diffraction or for the seeding of further acceleration stages.