F. Liu,
Z. Chen,
T. Morishita,
K. Bartschat,
B. Böning,
and S. Fritzsche
Single-cycle versus multicycle nonsequential double ionization of argon
Phys. Rev. A, 104 :013105 (July 2021)
Single-cycle versus multicycle nonsequential double ionization of argon
Phys. Rev. A, 104 :013105 (July 2021)
Abstract:
Using an improved quantitative rescattering model, we calculate the correlated two-electron momentum distributions (CMDs) for nonsequential double ionization of Ar exposed to intense laser pulses with a wavelength of 790 nm at a peak intensity of 1.0×10¹⁴ W/cm². We analyze the drastic variations in the CMDs that were observed by Kübel et al. [New J. Phys. 16, 033008 (2014)] in the transition from near-single-cycle to multicycle driving laser pulses. Our model reproduces their experimental data well. We also find that the transition from near-single-cycle to multicycle driving laser pulses depends strongly on the details of the pulse envelope. Special attention is paid to the mechanisms responsible for the cross-shaped structure observed experimentally with 4 fs pulses. Our analysis reveals that the cross-shaped structure in the carrier-envelope phase-averaged CMD for near-single-cycle pulses can be attributed to strong backward scattering of the recolliding electron as well as the narrow momentum distributions of the tunnel-ionized electrons compared to those for long pulses. This also explains why the cross-shaped distributions collapse to a rather structureless distribution when the pulse duration is increased to 8 fs.