R. Müller,
A. Volotka,
and A. Surzhykov
Excitation of the ²²⁹Th nucleus via a two-photon electronic transition
Phys. Rev. A, 99 :042517 (April 2019)
Excitation of the ²²⁹Th nucleus via a two-photon electronic transition
Phys. Rev. A, 99 :042517 (April 2019)
Abstract:
We investigate the process of nuclear excitation via a two-photon electron transition (NETP) for the case of the doubly charged thorium. The theory of the NETP process was originally devised for heavy-helium-like ions. In this work, we study this process in the nuclear clock isotope 229Th in the 2+ charge state. For this purpose we employ a combination of configuration interaction and many-body perturbation theory to calculate the probability of NETP in resonance approximation. The experimental scenario we propose for the excitation of the low-lying isomeric state in 229Th is a circular process starting with a two-step pumping stage followed by NETP. The ideal intermediate steps in this process depends on the supposed energy ℏωN of the nuclear isomeric state. For each of these energies, the best initial state for NETP is calculated. Special focus is put on the most recent experimental results for ℏωN.