Abschlussarbeiten

2017

P. Pfäfflein
Entwicklung und Aufbau eines Teilchendetektors für erste Experimente am Ionenspeicherring CRYRING
Masterarbeit
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (November 2017)
Abstract:
This thesis describes the development of a particle counter based on a Cerium activated yttrium aluminium perovskite (YAP:Ce) scintillator. The detector is designed for charge exchange experiments at the ion storage ring CRYRING at the GSI Helmholtz Zentrum für Schwerionenforschung in Darmstadt. It will be used for charge exchange experiments. The suggested detector design was tailored for the requirements set by the desired ultra-high vacuum conditions of up to 1E-12 mbar at CRYRING in combination with a high radiation hardness against ion irradiation. The design was kept as simple as possible, offering an easy exchange of the scintillator (not limited to YAP:Ce) if necessary. For an estimation of the detector lifetime the radiation hardness was systematically investigated for hydrogen, oxygen and iodine irradiation in the energy regime of 1–10 MeV. The measurement took place at the JULIA tandem accelerator operated by the Institute of Solid State Physics at the University of Jena. As the measurement of detector degradation the light yield was used. Values determined for the critical fluence, defined as fluence at half the initial light yield, varied from 1E15/cm2 in the case of hydrogen down to 1.7E12/cm2 for iodine irradiation. Prior to the hardness investigation, the used photomultiplier tube (PMT) was tested for temporal drifts of the output signal and whether the signal depends on the position of illumination on the sensitive surface. To the limit of the experimental uncertainties, no such dependencies could be observed. It was concluded that the investigated PMT was well suited for the use in the experiment as well as in the particle counter.
M. Kienel
Power Scaling of Ultrashort Pulses by Spatial and Temporal Coherent Combining
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (September 2017)
Abstract:
Ytterbium-doped solid-state lasers are versatile tools for the generation of intense ultrashort pulses, which are the key for many industrial and scientific applications. The performance requirements on the driving laser have become very demanding. High pulse-peak powers and high average powers are desired at the same time, e.g. to initiate a physical process of interest while providing fast data-acquisition times. Although sophisticated state-of-the-art laser concepts have already demonstrated remarkable performance figures, their working principles hamper the simultaneous delivery of both high peak power and high average power. Coherent combination of pulses provided by an amplifier array constitutes a novel concept for scaling both the average power and the peak power. Although this technique is applicable to any laser concept, it is especially well suited for fibers due to their high single-pass gain and their reproducible, excellent beam quality. As the number of amplifier channels may become too large for the ambitious energy levels being targeted, divided-pulse amplification (DPA) – the coherent combination of a pulse burst into a single pulse – can be applied as another energy-scaling approach, which is the focus of this thesis. In this regard, the energy-scalability of DPA implementations as an extension to well established chirped-pulse amplification (CPA) is analyzed. In a first experiment, high-energy operation is demonstrated using an actively-controlled DPA implementation and challenges that occurred are discussed. Next, in a proof-of-principle experiment, the potential of merging spatial and temporal coherent combining concepts in a power- and energy-scalable architecture has been demonstrated. Furthermore, phase stabilization of actively-controlled temporal and spatio-temporal combination implementations is investigated. Based on the findings, the layout of a state-of-the-art high-power fiber-CPA system is improved and extended by eight parallel main-amplifier channels, in which bursts of up to four pulse replicas are amplified that are eventually stacked into a single pulse. With this technique < 300 fs pulses of 12 mJ pulse energy at 700 W average power have been achieved, which is an order of magnitude improvement in both energy and average power compared to the state-of-the-art at the beginning of this work.
M. Möller
Probing Strong-field Photoionization of Atoms and Diatomic Molecules with Short-wave Infrared Radiation
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (August 2017)
Abstract:
The availability of pico- and femtosecond laser pulses, which can be focused to peak intensities in the range between 10^12 and 10^16 W/cm2, allows the investigation of the interaction between atoms or diatomic molecules with strong laser fields. It has revealed fascinating phenomena such as above-threshold ionization (ATI), high energy above-threshold ionization (HATI), non-sequential ionization (NSDI), high-harmonic generation (HHG) and, most recently, frustrated tunnel ionization (FTI). Today, these characteristic strong-field phenomena are the backbone of the burgeoning field of attosecond science. Derived applications presently mature to standard techniques in the field of ultrafast atomic and molecular dynamics. Examples are HHG as table-top source of coherent extreme ultraviolet radiation with attosecond duration or the application of HATI for the characterization of few-cycle laser pulses. Although experimental and theoretical considerations have shown that using longer laser wavelength is interesting for applications as well as for fundamental aspects, primary due to technological limitations, the vast majority of measurements has been performed at laser wavelengths below 1.0 μm. In this thesis, an optic parametric amplification laser source of intense femtosecond laser pulses with short-wave infrared (SWIR) and infrared (IR) wavelength is put to operation, characterized and compressed to intense few-cycle pulses. Further, it is applied to investigate strong-field photoionization (SFI) of atoms and diatomic molecules using two different experimental techniques for momentum spectroscopy of laser-induced fragmentation processes. For SFI of atoms, the velocity map imaging technique is used to measure three-dimensional momentum distributions from strong-field photoionization of Xenon by strong SWIR fields with different pulse duration. Besides observation of the pulse duration dependence of characteristic features, like the low-energy structures, which are particularly pronounced in the SWIR, an eye-catching off-axis low-energy feature, called the “fork”, which appears close to right angle to the polarization axis of the laser, is investigated in detail. The corresponding modeling with an improved version of the semi-classical model, demonstrates that on- and off-axis low-energy features can be traced to rescattering between the laser-driven photoelectron and the remaining ion. They can, thus, be understood on the same footing as HATI, where the electron scatters into high energy states. SFI of diatomic molecules is investigated using an apparatus for Ion Target Recoil Ion Momentum Spectroscopy (ITRIMS). Besides measuring intensity dependent vector momentum distributions of the protons from SFI of the hydrogen molecular ion, it is shown that momentum conservation can be used to extract the correlated electron momentum from the measured data, although the electron is not detected. The capability of having experimental access to the momenta of all fragments, i.e. two protons and one electron, enables the analysis of correlated electron-nuclear momentum distributions. Together, with a one-dimensional two-level model, this sheds light on correlated electron-nuclear ionization dynamics during SFI of diatomic molecules by SWIR fields.
J. Ullmann
Laserspektroskopie an hochgeladenen Bismutionen zum Test der Quantenelektrodynamik
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (July 2017)
Abstract:
Ths dissertation concerns a test of the theory of quantum electrodynamics in strong fields by laser spectroscopy of the ground state hyperfine splitting of highly charged bismuth ions. The experiment was performed and analyzed at the storage ring ESR at Helmholtzzentrum für Schwerionenforschung in Darmstadt. A systematic study of space charge effects was carried out and the laser wavelength measurement was verified by absorption spectroscopy of iodine. The determination of the ion velocity by an in-situ measurement of the electron cooler voltage reduced the main systematic uncertainty of the previous experiment by over an order of magnitude. This indicated the necessity to establish a permanent high voltage measurement at the electron cooler, which was promoted in this work. The measured wavelengths were combined in a specific difference which deviates significantly from the theoretical predictions. None of the investigated systematics has the magnitude to explain this deviation. Apart from doubts regarding theory, the literature value of the nuclear magnetic moment of Bismuth-209 is indicated as a possible explanation. Follow-up experiments to solve this puzzle are described in the outook.
S. Keppler
Räumlich-zeitliche Optimierung der Laserimpulse Yb3+-basierter Hochleistungs-Lasersysteme
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (July 2017)
Abstract:
As an alternative to established laser systems, directly diode-pumped petawatt systems based on Yb3+-doped laser materials are being developed, which can generate pulse energies of > 100 J as well as pulse durations of < 100 fs. The use of narrow-band high-power laser diodes as pump light sources allows an efficient excitation of the laser material, which significantly increases the repetition rate. For the successful application of these laser systems in experiments, however, they must be optimized both spatially and temporally with regard to the required experimental parameters. A maximum focused peak intensity and the highest possible temporal intensity contrast are of particular importance here. In the context of this thesis the possibilities for the spatio-temporal optimization of the pulses of Yb³⁺-based laser systems are investigated. Firstly, the effect of the spectral properties of Yb³⁺-doped materials on the amplified spectrum of laser pulses is investigated and optimized by the development of special spectral transmission filters, which results in an increased bandwidth and thus a reduction of the pulse duration. On the other hand, the spatial optimization of the laser pulse amplification is presented, whereby first the influences of the spatial amplification profile and the pump-induced phase aberrations are investigated. The optimization is then demonstrated by the development of a novel imaging amplifier architecture. Finally, the optimization of the temporal intensity contrast is presented. Newly developed methods have made it possible to completely avoid intensive pre-pulses. A detailed analysis of the generation of spontaneous amplified emissions in high-power laser systems is also derived. For the first time, the analytical model enables a comprehensive conceptual design of high-contrast laser systems with high peak powers.
B. Landgraf
Stimulated Raman backscattering in transient laser generated plasmas with ultra-short seed pulses
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (July 2017)
Abstract:
Stimulated Raman backscattering (SRBS) is a promising concept to create ultra-intense laser pulses. State-of-the-art SRBS experiments find best conditions close to the Langmuir wave-breaking limit, which is one reason, why it cannot be applied at high energy class systems, as focal lengths of hundreds of meters would be necessary. A solution is offered, if the scheme can be transferred to high pump intensities in the strong wave-breaking regime. One of the dominant competitors of SRBS at high intensities is Langmuir wave-breaking, which increases significantly at 10^14 W/cm^2. Recent studies propose the existence of a time frame in which wave-breaking starts, but is too slow to dephase the electron distribution resulting in efficient amplification with ultra-short seed pulses. In this work SRBS, in transient plasma distributions is demonstrated leading to broadband amplification of up to 80 nm. To understand the temporal dynamics, particle in cell (PIC) simulations are performed. The highest conversion efficiency of up to 1.2 % is found at 5 x 10^15 W/cm^2, which corresponds to the strong wave-breaking regime. At even higher intensities efficiency drops again, resulting in a lower average efficiency, but conserving its transform limited pulse duration. After wave-breaking at high intensities a decrease of the pulse energy is observed. To minimize this effect $\mu$m-sized nozzle orifices are manufactured for perfect matching between overlap length and plasma dimension achieving the best conversion efficiency of 2.3 % in this work. To explore static linear density gradients, trapezoid shaped nozzle orifices are sintered by a 3D printer. They provide exceptional stability and an SRBS spectrum of up to 30 nm bandwidth, which should only be accessible in the non-linear case. PIC simulations agree very well with negative density gradients (pump frame), which can partly compensate the pump chirp. Spectral features in the PIC simulation related to the absence of wave-breaking are not observed, possibly pointing to higher dimensional effects. There is no agreement of 1D PIC simulations and positive gradients in two consecutive experiments, which reinforces the thesis, that higher dimensional PIC simulations are necessary. One candidate for two dimensional mechanisms limiting SRBS efficiency is identified as angular chirp whose influence is extrapolated. This potentially allows the conversion efficiency to be increased by a factor of two. By inserting two glass wedges inside the seed setup, it is possible to change the pulse duration by dispersion. A strong correlation between efficiency function and pulse duration is found, where the former oscillates with the plasma period. This important feature has consequences for future experiments trying to explore the coherent wave breaking regime as it is not only necessary to achieve a sufficient growth time, but now also higher plasma densities are necessary for sub-20 fs seed pulses.
Z. Wu
Angular Correlation and Polarization of X-rays Emitted from Highly Charged Ions
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (May 2017)
Abstract:
In collisions of highly charged ions with electrons or light, ions are usually excited to one of their excited states and, then, may stabilize radiatively under the emission of fluorescence photons. Detailed studies on the emitted photons can help understand the structure and collision dynamics of the ions. When compared with total decay rates, angle-resolved properties such as angular correlation and polarization of emitted photons were found more sensitive to various interactions and effects and, actually, have helped provide new insights into electron-electron and electron-photon interactions in the presence of strong Coulomb fields. For this reason, such kind of studies has attracted considerable interest in both theory and experiment. Until now, however, almost all studies of x-ray angular correlation and polarization were performed for photons emitted from well-isolated energy levels. Little attention was paid so far to photon emissions from two or more overlapping resonances of ions. In this thesis, we develop a novel theoretical formalism to study radiative decay from the overlapping resonances. Special attention is paid to the question of how the splitting of these resonances affect the angular and polarization properties of emitted photons. Calculations are performed based on the density matrix theory and multi-configuration Dirac-Fock method. The obtained results from several case studies show that the photon angular distribution and polarization are strongly affected by the splitting and sequence of the overlapping resonances. Therefore, we suggest that accurate angle-resolved measurements of photon emissions may serve as a tool to identify level splitting and sequence of overlapping resonances in excited highly charged ions, even if they cannot be spectroscopically resolved. When applied to the isotopes with non-zero nuclear spin, moreover, such a tool can also be used to determine hyperfine splitting and associated nuclear parameters.
B. Marx-Glowna
Hochauflösende Röntgenpolarimetrie
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (May 2017)
Abstract:
Polarimetry has a long history with versatile applications in chemistry and pharmacy in the visible spectral range. In the field of X-ray radiation, the interest in high-resolution polarimeters has only increased in recent years. This work is based on a project aiming to observe the vacuum birefringence in an ultra-intense laser field. The present dissertation describes the development of a precision polarimeter based on multiple reflections at a Bragg angle of 45° in silicon channel-cut crystals. A degree of polarization purity of 10^-10 could be achieved. This improves the best x-ray polarimeters to date by more than two orders of magnitude. In this thesis, experimental and theoretical factors are investigated, which currently limit the degree of polarization purity of precision polarimeters, such as multiple-beam cases, surface treatment of the crystals and source parameters. A new methodology of thin crystals is presented with which the degree of polarization purity can be improved in the future. The high purity of the precision polarimeter allows numerous new applications in nuclear resonant scattering and quantum optics as well as the characterization of X-ray sources of the 3rd and 4th generation.
S. Stock
Auger cascades in resonantly excited neon
Masterarbeit
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (March 2017)
Abstract:
The Auger cascades following the resonant 1s -> 3p and 1s -> 4p excitation of neutral neon are studied theoretically. In order to accurately predict Auger electron spectra, shake probabilities, ion yields, and the population of final states, the complete cascade of decays from neutral to doubly-ionized neon is simulated bymeans of extensive MCDF calculations. Experimentally known values for the energy levels of neutral, singly and doubly ionized neon are utilized in order to further improve the simulated spectra. The obtained results are compared to experimental findings. For the most part, quite good agreement between theory and experiment is found. However, for the lifetime widths of certain energy levels of Ne+, larger differences between the calculated values and the experiment are found. It is presumed that these discrepancies originate from the approximations that are utilized in the calculations of the Auger amplitudes.
N. Seegert
Signatures of the quantum vacuum in inhomogeneous electromagentic fields
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (February 2017)
Abstract:
According to the theory of quantum electrodynamics, zero-point fluctuations of the vacuum manifest themselves through the ubiquitous creation and annihilation of virtual electron-positron pairs. These give rise to classically forbidden nonlinear interactions between strong electromagnetic fields in vacuum, first described by Heisenberg and Euler in 1936. As these interactions only become sizable for large strengths of the involved fields, an experimental verification of purely optical signatures of the quantum vacuum nonlinearity is yet to be achieved. This thesis deals with various signatures of the quantum vacuum nonlinearity in the presence of inhomogeneous electromagnetic fields, putting emphasis on analytical methods. The proper treatment of inhomogeneities is motivated by the rapid development of high-intensity lasers capable of generating enormous field strengths in their focal spot, making them promising tools for upcoming discovery experiments. In the first part of this work we introduce “quantum reflection” as a new signature of the quantum vacuum nonlinearity, requiring manifestly inhomogeneous pump fields. To this end we start with an analytical expression of the “two-photon” polarization tensor (photon two-point function) in constant pump fields, and develop a formalism to generalize it to inhomogeneous pump fields. In the experimentally relevant weakfield limit our formalism permits a detailed study of various types of inhomogeneities and configurations. Additionally, we also gain insight into the nonperturbative strongfield limit. The investigation of quantum reflection is concluded by giving estimates for the attainable number of quantum reflected photons in experiments consisting of state-of-the-art high-intensity lasers. We then turn to the investigation of photon splitting and merging in inhomogeneous pump fields. For the first time, we compute the “three-photon” polarization tensor for slowly-varying but otherwise arbitrary pump field inhomogeneities in the low-energy limit. With its help we discuss in detail the polarization properties and selection rules governing these two processes. For photon merging we perform an elaborate study of possible experimental set-ups employing parameters of present-day state-of-the-art high-intensity lasers. The combination of polarization shifts, frequency conversion and the emission of the signal into background-free areas establishes photon merging as an ideal candidate to experimentally verify the nonlinear nature of the quantum vacuum in upcoming experiments.

2016

T. Gassner
High Precision X-Ray Spectroscopy of Highly Charged Heavy Ions
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (December 2016)
Abstract:
In the present thesis, the advantages of two new and complementary detector concepts for x-ray spectroscopy of highly charged ions over conventional semiconductor detectors have been worked out. These two detectors are the twin crystal spectrometer FOCAL and the metallic magnetic microcalorimeter maXs. Although the maXs microcalorimeter is still under development, first very promising x-ray spectra could be recorded at the ESR storage ring at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt. With the crystal spectrometer FOCAL, which was fully equipped for the first time, a dedicated beam time at the ESR, aiming for the precise determination of the 1s Lamb shift of hydrogen-like gold (Au^78+), could be conducted. The obtained result for the Lyman-a1 transition energy is afflicted with a small statistical uncertainty, however, the encountered systematic effects are still posing a challenge to overcome. In the outlook, it will be discussed in detail how the accuracy of a future measurement could be improved, and in which way both detector concepts could support each other optimally.
I. Tamer
Investigation of Pump-Induced Phase Aberrations for Solid-State Laser Amplifiers
Masterarbeit
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (November 2016)
Abstract:
Recent scientific endeavors in the realm of relativistic laser plasma physics benefit from the increase of the on-target intensity (~10^21 W/cm2) generated by a sufficiently powerful laser. With the POLARIS laser system in Jena, Germany, the processes of ion or electron acceleration, laser-based x-ray generation, high intensity laser physics, and laser-based proton radiography can be more adequately understood and improved towards higher particle energies. In order to further fuel the investigation of these interactions, the question remains as to how a state-of-the-art petawatt class laser system can be upgraded. Several paths can be taken to increase the intensity: through improved beam profiles via wavefront aberration corrections, higher energies, and shorter pulse durations. Although diode-pumped solid-state laser systems employing Yb3+-doped active materials, such as POLARIS, can achieve femtosecond pulses with energies in the Joule regime, the focal spot intensity is nevertheless limited by the quality of the laser beam, resulting from strong phase distortions within the beam profile. These phase aberrations are mainly a product of the optical pumping process of the active material, necessary in order to generate population inversion and optical gain. A percentage of the energy from the pump laser is translated into heat through non-radiative transitions, which results in a temperature increase and subsequent refractive index change, based on the dn/dT, photoelastic effect, and expansion of the material. A non-uniform change in the refractive index due to the intensity profile of the pump laser causes the incident wavefront of the seed laser to experience an additional, spatially and temporally varying, phase-shift. This effect, due to the temperature rise in the active material, is referred to as a "thermal lens". An additional type of aberration is also formed when a difference exists in the charge distribution of the dopant ions at different energy levels. Since this is based on the amount of population inversion encouraged by the pump, this spatiotemporal phase-shift effect is called a "population lens". Both of these aberrations affect the phase profile of the incident seed laser with comparable amplitudes, yet occur on difference time scales. Therefore, revealing the full behavior of the pump-induced phase aberrations in diode-pumped active materials requires a spatially and temporally resolved study. The investigation presented in this thesis accomplishes this through high-resolution interference measurements, gain measurements, and a thermal simulation with COMSOL, verified with a thermal imaging camera. A testbed amplifier was constructed afterwards, which can be used to further observe these aberrations within normal amplifier operation and test relay-imaging vs multi-pass amplification, multiple active materials, and additional accessories utilized within amplifier stages, through multiple diagnostics. The combination of the pump source, active material, and amplifier design topics in this thesis grants a well-rounded insight into the field of diode-pumped solid-state laser systems.
J. Polz
Laser proton acceleration from water micro-droplets and solid hydrogen targets
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (October 2016)
Abstract:
*
M. Kiffer
Selektive Breitbandanregung von Ionen in einer Penningfalle
Bachelorarbeit
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (September 2016)
Abstract:
This thesis examines the Stored waveform inverse Fourier transform SWIFT-procedure. With this procedure one can excite and remove several ions types selectively from a Penning trap. An excitation with SWIFT is performed by an external electric signal. The first part summaries the foundations of the movement and the excitation in an ideal Penning trap. Afterwards the excitation with SWIFT in a real Penningtrap is analyzed. Here a big discrepancy between the ideal and real trap arise. Therefore a direct selective removal is inefficient. To compensate for this inefficiency the SWIFT-procedure is adapted. The main idea is to use a switch to remove weakly excited ions from the trap. After the excitation the trap voltage is switched to a low value, which reduces the binding energy of the trap. The last part contains the application of the SWIFT-procedure at the ARTEMIS ion trap. During this application ions where selectively removed from the trap. The obtained findings for the SWIFT-procedure will be applied for an application at the HILITE experiment.
K.-H. Blumenhagen
Experimental studies on polarization correlations in hard x-ray Rayleigh scattering
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (July 2016)
Abstract:
This thesis investigates experimentally the elastic scattering of hard x-rays. Combining the novel technologies of a third-generation synchrotron radiation source and a Si(Li) strip detector which acts as a highly efficient x-ray Compton polarimeter allows to measure the linear polarization of the elastically scattered photons for a highly linearly polarized incident beam. Here, such a polarization transfer is considered for the first time in the hard x-ray regime. With a photon energy of 175 keV and gold as scatterer, a highly relativistic regime is chosen where Rayleigh scattering is the only significant elastic scattering contribution. In addition to the polarization of the elastically scattered photons, also the angular distribution is measured. The data are compared to fully relativistic second-order QED calculations. Both observables are well described by these predictions whereas the form factor approximation fails. The simultaneous measurement of angular distribution and polarization allows to identify spurious agreement of the form factor theory in only one observable. At scattering angles around 90°, the assumption that the incident beam is completely linearly polarized is not sufficient to explain the data. The measured linear polarization of the Compton-scattered photons is used to obtain an independent estimate for the incident beam polarization of about 98% which leads to an agreement between experiment and theory at all measured data points. The significant change introduced by this depolarization of 2% indicates a strong sensitivity on the polarization of the incident beam. In the present experiment, this sensitivity limits the precision, but on the other hand, it allows a precise reconstruction of the incident beam polarization when the theory is established. Here, such a reconstruction is performed and the result agrees with the 98% from the Compton polarization, but with a slightly lower uncertainty and with less statistics.
A. Sävert
Few-cycle microscopy of a laser wakefield accelerator
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (June 2016)
Abstract:
This thesis describes the development and first application of a novel diagnostic for a laser driven wakefield accelerator. It is termed Few‐Cycle Microscopy (FCM) and consists of a high-resolution imaging system and probe pulses with a duration of a few optical cycles synchronized to a high intensity laser pulse. Using FCM has opened a pristine view into the laser‐plasma interaction and has allowed to record high‐resolution images of the plasma wave in real time. Important stages during the wave’s evolution such as its formation, its breaking and finally the acceleration of electrons in the associated wake fields were observed in the experiment as well as in simulations, allowing for the first time a quantitative comparison between analytical and numerical models and experimental results. Using this diagnostic, the expansion of the wave’s first period, the so‐called ‘bubble’, was identified to be crucial for the injection of electrons into the wave. Furthermore, the shadowgrams taken with FCM in combination with interferograms and backscatter spectra have revealed a new acceleration regime when using hydrogen as the target gas. It was found that in this scheme electron pulses are generated with a higher charge, lower divergence and better pointing stability than with helium gas. The underlying pre‐heating process could be attributed to stimulated Raman scattering, which has been thought up till now to be negligible for short (t < 30 fs) laser pulses. However, as it is shown in this thesis, the interplay of the temporal intensity contrast of the laser pulse 1 ps before the peak of the pulse together with a sufficiently high plasma electron density can provide suitable conditions for this instability to grow, resulting in improved electron pulse parameters.
F. Kurian
Cryogenic Current Comparators for Precise Ion Beam Current Measurements
Dissertation
Johann Wolfgang Goethe-Universität Frankfurt; Fachbereich Physik (March 2016)
Abstract:
The planned Facility for Antiproton and Ion Research (FAIR) at GSI has to cope with a wide range of beam intensities in its high-energy beam transport systems and in the storage rings. To meet the requirements of a non-intercepting intensity measurement down to nA range, it is planned to install a number of Cryogenic Current Comparator (CCC) units at different locations in the FAIR beamlines. In this work, the first CCC system for intensity measurement of heavy ion beams, which was developed at GSI, was re-commissioned and upgraded to be used as a 'GSI - CCC prototype' for extensive optimization and development of an improved CCC for FAIR. After installation of a new SQUID sensor and related electronics, as well as implementation of improved data acquisition components, successful beam current measurements were performed at a SIS18 extraction line. The measured intensity values were compared with those of a Secondary Electron Monitor (SEM). Furthermore, the spill-structure of a slowly extracted beam was measured and analyzed, investigating its improvement due to bunching during the slow-extraction process. Due to the extreme sensitivity of the superconducting sensor, the determined intensity values as well as the adjustment of the system for optimal performance are strongly influenced by the numerous noise sources of the accelerators environment. For this reason, detailed studies of different effects caused by noise have been carried out, which are presented together with proposals to reduce them. Similarly, studies were performed to increase the dynamic range and overcome slew rate limitations, the results of which are illustrated and discussed as well. By combining the various optimizations and characterizations of the GSI CCC prototype with the experiences made during beam operation, criteria for a more efficient CCC System could be worked out, which are presented in this work. The details of this new design are worked out with respect to the corresponding boundary conditions at FAIR. Larger beam tube diameters, higher radiation resistivity and UHV requirements are of particular importance for the cryostat. At the same time these parameters affect the CCC superconducting magnetic shielding, which again has significant influence on the current resolution of the system. In order to investigate the influence of the geometry of the superconducting magnetic shield on different magnetic field components and to optimize the attenuation, FEM simulations have been performed. Based on the results of these calculations, modifications of the shield geometry for optimum damping behavior are proposed and discussed in the thesis.
A. Klenke
Performance scaling of laser amplifiers via coherent combination of ultrashort pulses
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (January 2016)
Abstract:
Laser systems emitting ultrashort pulses have become an indispensable tool in science. However, the performance of a single amplifier is limited by a variety of physical effects. Hence, the coherent combination of ultrashort pulses has been investigated as a way to provide a new power-scaling opportunity. This concept can provide a simultaneous increase of the average power, pulse energy and peak power while preserving the beam quality and temporal pulse profile of a single-amplifier system. Theoretical considerations were carried out to investigate the impact of differences between the pulses on the combination process. It could be shown that their impact is small enough to realize laser systems based on coherent combination experimentally with a good combination efficiency. Additionally, the total combination efficiency converges to a fixed values for an increasing number of channels. The coherent combination concept was demonstrated experimentally with a fiber-CPA system comprising four parallel state-of-the-art amplifiers. In these experiments, the highest peak power emitted from a fiber laser system so far (22GW) could be achieved. Finally, for future systems with a large channel count, the compact integration of these channels will play a major role in reducing the footprint and component count and, therefore, the cost. Experimentally, this was demonstrated by employing a multicore fiber together with a compact beam-splitter design.
M. O. Herdrich
Photonen- und Elektronen-Emission von relativistischen Schwerionen beim Durchgang durch Materie
Masterarbeit
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (January 2016)
Abstract:
The planned FAIR-complex on the site of the GSI Helmholtz-Center for Heavy-Ion Research establishes a broad bandwidth of new experimental opportunities especially in the area of heavy-ion physics. New efforts to not only use its high-energy storagering HESR for proton-antiproton collisions, but also to open it up for experiments with relativistic heavy ions, are of great importance for the regime of relativistic collisions. They extend the options for atomic-physical studies into so far unreached areas of energy. This allows collision experiments of intensive, well-defined ion beams with virtually the full range of both energy and charge states with a variable gas-target. Electrons and photons released in those interactions lead the way to detailed observations and analysis of atomic structures and processes within the collision system. The planning of future experiments requires preferably pragmatic and precise methods of describing the cross-sections of the most important interaction-processes that lead to the emission of electrons and photons in ion-atom-colissions. In the frame of this work a basic overview of relevant interaction processes of collisions in the new energy range made available beyond 500 MeV/u is summarized. Furthermore the theoretical description of their emission characteristics is collected from already existing work, and used to calculate the energy and angle differential cross-sections and polarisation behaviours for a few processes in a wide range of parameters. The data sets are condensed into a database and compared to the results of other work, to test their quality. In the second part of this work the aquired data is used to plan a possible experiment at the HESR. For one, this demonstrates the practical usability of the database for future experiments. But also, the proposed experiment could be conducted in the initial phase of the storage-ring’s operation. The functionality of the facility could be checked and the effect of negative-polarized x-rays emitted by the radiative electron capture process, which - because of insufficient experimental capabilities - was not detectable yet, could be measured for the first time. Beyond the sole optimization of the experiment’s parameters using the database, several simulations were executed. The efficiency of a possible detector was studied, as well as the detectability of the effect itself under the precalculated experimental conditions. Secondly an analysis of the fraction of the radiation background was performed, that looked at the electrons which are also emitted and their interaction products with the experiment setup. The newly gained insight shows that a measurement of the negative polarization effect at the new storage-ring seems possible, but new problems and challenges arise from the fact that the emitted particles carry much higher energies. For example, binary encounter electrons can reach kinetic energies in the MeV-regime, which may lead to the emission of high energy secondary Bremsstrahlung. This has to be considered when designing the new target-chamber and detectors, and it is crucial for the planning of experiments to come.

2015

K. S. Schulze
Methoden und Möglichkeiten der hochpräzisen Röntgenpolarimetrie
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (November 2015)
Abstract:
In the visible range, polarimetry is a versatile tool in physics, chemistry and life sciences. Also in the x-ray range, the measurement of polarization changes can be found in a large number of scientific fields. The topic of this work is the analysis of such polarization changes with an extremely high precision. Therefore, two methods of creating very pure linear polarization states are investigated theoretically and experimentally, namely polarimetry with channel-cut crystals and polarimetry based on the Borrmann effect. With these methods, polarization purities reaching ten orders of magnitude can be realized, which enable the precise study of birefringence, dichroism and optical activity. This is demonstrated by different experiments. For instance, a rotation of the polarization plane of less than one arc second was detected during the transmission of an x-ray beam through a sugar solution. Various properties of the polarizers are explained using the dynamical theory of x-ray diffraction. These calculations show that especially at high photon energies the polarization purity is limited by so called umweganregung. Besides the measurement of small polarization changes, the high polarization purity leads also to application in nuclear resonant scattering experiments. Photons that change their polarization during scattering can pass the polarimeter whereas the non-resonantly scattered photons are suppressed by many orders of magnitude. Thus, this method allows a pure measurement of nuclear spectra and lead to the discovery of several quantum optical phenomena in the x-ray range.
R. A. Müller
Radiative recombination in the presence of an intense laser field
Masterarbeit
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (September 2015)
Abstract:
In this thesis we present a theoretical study on the radiative recombination of electrons into the ground state of hydrogen like ions in the presence of an intense external laser field. We employ for the description of this process Heisenberg’s S-matrix theory, where the final bound state of the electron is constructed using first order time dependent perturbation theory. Two different initial electron states are considered. First asymptotically plane-wave-like electrons with a separable Coulomb-Volkov continuum wave function and secondly twisted electrons with a well defined orbital angular momentum constructed from Volkov states. Using this approach we perform detailed calculations for the angle-differential and total cross section of laser assisted radiative recombination considering low-Z ions and laser intensities in the range from IL = 10^11 W/cm^2 to IL = 10^13 W/cm^2. Special emphasis is put on the effects arising due to the laser dressing of the residual bound state. It is seen that the bound state dressing remarkably affects the total cross section and manifests moreover as asymmetries in the angular and energy distribution of the emitted photons. For incident Coulomb-Volkov electrons we study moreover the polarization of the emitted recombination radiation. Here we find that the direction of polarization is rotated depending on the energy of the emitted recombination photons.
T. Jahrsetz
Two-photon processes in highly charged ions
Dissertation
Ruprecht-Karls-Universität; Fakultät für Physik und Astronomie (March 2015)
Abstract:
Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

2014

S. Höfer
Zeitaufgelöste Röntgenbeugung an einkristallinem Indiumantimonid
Dissertation
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (November 2014)
Abstract:
In this work the structural changes in the semiconductor indiumantimonide (InSb) after the excitation with an ultrashort laser pulse (60fs) are investigated, by using ultrashort x-ray pulses (100 fs). The source of this ultrashort x-ray pulses is a laser-plasma-x-ray-source. In this source an ultrashort and intense laser pulse is focused to a 20 µm thick metal foil (intensity up to 8*10^16 W/cm^2, wavelength 800 nm), by the produced plasma characteristic x-rays and bremsstrahlung are emitted. To characterize the emitted radiation a novel timepix-detector is used, with this it was possible to detect bremstrahlung up to 700 keV. The typical extinction depth of x-rays is several millimeter and therefore much deeper than the absorption depth of the excitation laser with 100 nm. By using a strong asymmetric Bragg reflection it was possible to adapt the extinction depth from the x-rays to the absorption depth of the optical laser pulse used for excitation. Through this small extinction depth was it possible to measure 2 ps after excitation a strain of 4% in a 4 nm thin layer on the surface. The excitation of the semiconductor is described with different theoretical models, the predicted temporal and spatial evolution of the strain is compared with measured results.
H. Ding
Study of Radiative Electron Capture in Relativistic Ion-Atom Collisions
Masterarbeit
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (August 2014)
Abstract:
Within the frame work of this work, the radiative electron capture (REC) was studied with emphasis on the polarization properties. First, a fast REC calculator was developed, which facilitates the calculation for REC angular differential cross section and degree of linear polarization for initially bare projectiles with kinetic energy between 5 MeV/u and 400 MeV/u. The interpolations of radiative recombination properties performed by this fast calculator are, on the percent level, in agreement with the exact fully relativistic calculations. With the extension of the underlying RR database to 5 GeV/u, this Calculator can be used for the planning and analysis of measurements at the HESR of the future FAIR facility. For example, at the HESR the cross-over of the REC polarization degree to negative values could be studied. Moreover, when taking into account the shielding effects, by using the successive ionization approximation and neglecting the electron-electron correlation, the working domain of the calculator could be, in principle, extended to initially hydrogen- or helium-like projectiles. Second, the data of Xe54+ ions colliding with neutral hydrogen gas at 150.5 MeV/u of energy, measured in 2008 using a 2D position sensitive Si(Li) detector, were analyzed with a sophisticated analyzing routine, which yielded results in good agreement with the currently available theory. The K-REC was found strongly polarized at the observation angle near 90° in the laboratory frame, which leads to the potential of tunable polarized hard X-ray source with energy (up to MeV) and degree of linear polarization tunability. The experimental uncertainty arose mainly from the indefiniteness of the quality factor (polarization sensitivity) of the polarimeter, which was estimated using a series of Monte Carlo simulations each requiring a day or more of computation time. Last but not least, additional experimental work addressing the radiation yield arising from the interaction of high-power lasers with plasmas were performed using plastic scintillators (coupled to PMTs) and a fast multi-channel oscilloscope. It was possible to record the initial radiation burst and also subsequent events due to activation of the experimental setup. The results indicate that the radiation ux in high-power laser environment is much too high to use large-volume, high-stopping power X-ray detectors like the 2D Si(Li) polarimeter.
G. A. Becker
Untersuchung des Einflusses von Targetmaterial, Foliendicken und Intensitätskontrast bei der Optimierung der Laser-Protonen-Beschleunigung
Masterarbeit
Friedrich-Schiller-Universität Jena; Physikalisch-Astronomische Fakultät (March 2014)
Abstract:
The present thesis reports on the results of a laser-driven ion acceleration experiment carried out at the POLARIS laser located in the Helmholtz-Institute Jena. In this experiment, the laser pulses of POLARIS were focused on thin metal foils. The dominant ion or proton acceleration mechanism in such an experiment is Target Normal Sheath Acceleration (TNSA). As a result of this acceleration process, quasi-thermal proton-spectra are generated with a cut-off energy in the range of MeV. The spectra and therefore the maximum proton energy depend on many experimental parameters. At POLARIS, we investigated the influence of foil thickness, material and the temporal intensity contrast on the maximum achievable proton energy. For this, we used copper, silver, gold, aluminium and tantalum foils with different thicknesses from a few 10’s of micrometers down to 100 nanometer. It was found, that the foil material exerts a strong influence on the maximum proton and an optimal foil thickness was found for most of the materials, where the proton energy attains its maximum. Furthermore the influence of pulse contrast improvement was investigated by using a fast Pockels cell and an alternative front-end based on XPW (cross-polarized wave generation). The contrast improvement resulted in a lower optimal foil thickness, but did not result in a higher maximum proton energy.