View in Browser

Newsletter May 2024

Dear colleagues and friends of the HI-Jena,

we are glad to provide you with the May 2024 issue of the newsletter of the Helmholtz Institute Jena.
Below you find informations and news about recent activities of our institute.

Kind Regards,
Helmholtz Institute Jena

HILITE Penning trap passes commissioning

The interaction of intense laser light with atomic matter was a widely explored field in the 2000s. However, the reaction products were a mixture of different charge states, and the ionization channels could not be distinguished from each other very well. In order to be able to separate the individual ionization events from each other, the HILITE Penning trap was built. It can provide ions of any specific element and charge state as a target. The setup is designed in a transportable fashion to be operated at any laser facility in order to cover a wide range of laser parameters – especially concerning laser intensity and laser wavelength.

Recent developments at the Helmholtz Institute Jena have boosted the performance of the experiment. Ion clouds with several 10,000 ions can be formed in the ion trap. To allow efficient laser experiments with a huge overlap of the laser pulses and the ion cloud, a high ion density is crucial. This is ensured by fast ion cooling to compress the ions to a small volume. The cooling of the ion cloud is done with the well understood and elaborated technique of resistive ion cooling. In recent publications, the team showed fast ion cooling for large ion clouds (see Figure 1a). The fast decay in the beginning is caused by resistive ion cooling where the ions lose 99.99% of their kinetic energy within roughly 50 ms [1]. This will allow for an experiment cycle time of less than 1 second which is comparable of the typical cycle time of a high-power laser. Furthermore, using the uncommon approach of a dual-hot-end resonator, it is possible to disentangle resistive ion cooling from the effect of ion dephasing. This increases the understanding of the processes inside the ion cloud and allows to maximise the harmonicity of the ion trap with a large ion ensemble [2]. After cooling, the FWHM of the ion distribution is found to be 600 µm as depicted in Figure 1b. Consequently, 95% of the stored ions have a distance less than 112 µm from the trap centre [1]. The corresponding ion density is about 10.000 mm-3 which is sufficiently high to ensure a high number of interacting ions in a laser experiment.

Within the next months, the HILITE Penning trap setup will be prepared to be combined with the JETI200 laser, also located at the Helmholtz Institute Jena. In the experiments, ionisation cross sections will be measured for different ion species of carbon, nitrogen, oxygen, and neon. The used intensities will be in the relativistic regime. Due to the ionic target, the electric field of the weakest bound electron will be close to the laser’s electric field and the experimental results can be compared with theory which describes tunnel ionisation at relativistic electron energies. In addition, it is foreseen to detect photons in the x-ray regime which are produced in the sense of high-harmonic generation.

References:

[1] M. Kiffer, S. Ringleb, Th. Stöhlker and M. Vogel, Phys. Rev. A 109, 033102 (2024).
[2] S. Ringleb, M. Kiffer, Th. Stöhlker and M. Vogel, Eur. Phys. J. Plus (accepted for publication).

News and Announcements

Short-wave XUV imaging: High funding amount for new research group in Jena

In a new cooperation between the Helmholtz Institute Jena, a branch of GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, and Friedrich Schiller University…
Weiterlesen »

ERC Advanced Grant for Thomas Stöhlker

Million-euro funding for experiments with storage rings at GSI/FAIR on the way to the nuclear clock
Weiterlesen »

Upcoming events

DateTitleLocation
18.09.2024 MT Annual Meeting 2024 Humboldt-Universität Berlin
19.09.2024 MT Annual Meeting 2024 Humboldt-Universität Berlin
20.09.2024 MT Annual Meeting 2024 Humboldt-Universität Berlin

Recently finished theses

Almassarani M. Sub-picosecond dynamics during relativistic laser-plasma interaction . Friedrich-Schiller-Universität Jena; 2024 May.      [DOI]      [File] 

Recent publications

Dar DF, Fritzsche S. Nonlinear interference and electron dynamics: Probing photoelectron momentum distributions in strong-field ionization. Physical review / A. 2024 Apr.; 109(4):L041101.      [DOI]      [File] 
Wu Z, Wang JQ, Li Y, An YH, Fritzsche S. Relativistic R-matrix calculations for the photoionization of W61 + ions. Physics of plasmas. 2024 Apr.; 31(4):043301.      [DOI]      [File] 
Ebrahimzadeh S, Adnan S, Li Y, Pecile VF, Fellinger J, Salman HS, Heyl CM, Hartl I, Heckl OH, Porat G. Spectrally tunable phase-biased NALM mode-locked Yb:fiber laser with nJ-level pulse energy. JPhys photonics. 2024 Apr.; 6(2):02LT01 -.      [DOI]      [File] 
Marsh JJ, Bruno CG, Davinson T, Woods PJ, Andelkovic Z, Bräuning-Demian A, Chen R, Dellmann SF, Erbacher P, Fedotova S, Forstner O, Freire-Fernandez D, Glorius J, Gumberidze A, Hall O, Hillenbrand P, Herfurth F, Hudson-Chang G, Kalinin A, Lestinsky M, Litvinov YA, Menz EB, Nociforo C, Petridis N, Psaltis A, Sanjari S, Selina M, Spillman U, Sidhu RS, Stöhlker T, Varga L, Vorobjev G. The first in-beam reaction measurement at CRYRING@ESR using the CARME array. The European physical journal / A. 2024 Apr.; 60(4):95.      [DOI]      [File] 
Schmidt RP, Ramakrishna S, Peshkov AA, Huntemann N, Peik E, Fritzsche S, Surzhykov A. Atomic photoexcitation as a tool for probing purity of twisted light modes. Physical review / A. 2024 Mar.; 109(3):033103.      [DOI]      [File] 
Wu Z, Li Y, Fritzsche S. Competition of the Breit interaction in angular anisotropy of Auger electrons. Physical review / A. 2024 Mar.; 109(3):032817.      [DOI]      [File] 
Fritzsche S, Jiao L, Visentin G. Rapid Access to Empirical Impact Ionization Cross Sections for Atoms and Ions across the Periodic Table. Plasma. 2024 Mar.; 7(1):106 - 120.      [DOI]      [File] 
Kiffer M, Ringleb S, Stöhlker T, Vogel M. Resistive cooling of ions' center-of-mass energy in a Penning trap on millisecond time scales. Physical review / A. 2024 Mar.; 109(3):033102.      [DOI]      [File] 
Wang Y, Visentin G, Jiao LG, Fritzsche S. Acceleration correction to the binary-encounter Bethe model for the electron-impact ionization of molecules. Physical review / A. 2024 Feb.; 109(2):022804.      [DOI]      [File] 
Wang Y, Jiao LG, Fritzsche S. Generalized binary-encounter-Bethe model for electron impact ionization of atoms. Journal of physics / B. 2024 Feb.; 57(4):045202 -.      [DOI]      [File] 
© 2024 Helmholtz-Institut Jena., Alle Rechte vorbehalten.